УДК 621.22-546

ИЗМЕРИТЕЛЬНЫЙ КОМПЛЕКС ДЛЯ ИССЛЕДОВАНИЯ РАСХОДНО-ПЕРЕПАДНЫХ ХАРАКТЕРИСТИК УПРАВЛЯЮЩИХ УСТРОЙСТВ ПОЗИЦИОННОГО ГИДРОПРИВОДА

© 2012 М. С. Полешкин, В. С. Сидоренко

Донской государственный технический университет, г. Ростов-на-Дону

Представлен измерительный комплекс, позволяющий исследовать нестационарные характеристики управляющих устройств. Регистрация параметров: расхода, давления и перемещения золотника клапана - проводится в реальном времени при помощи программного пакета PowerGraph и платы ЦАП-АЦП Е-20-10. Результаты позволили получить закономерности между выходными параметрами потока и уточнить математическое описание гидравлического устройства управления.

Нестационарные характеристики, методика проливки, расходно-перепадные характеристики, программа PowerGraph, гидромеханические устройства.

Введение. Расчёт и проектирование управляющих дросселирующих устройств связаны с особенностью их статических, динамических и эксплуатационных характеристик, а также с возможными изменениями физических параметров системы, конфигурации и настройки их исполнительных элементов [1].

Исполнительным элементом таких устройств является золотниковая пара, однако исследование их гидравлических характеристик осложнено рядом нестабильных параметров: вязкость рабочей жидкости, влияние гидродинамических сил и т.д.

Наиболее важной при регулировании магистралью слива гидродвигателя является область малых открытий-закрытий (*x*=0...0,3 мм) исполнительного элемента управляюще-го устройства, поскольку именно она определяет динамические качества клапана и жё-сткость характеристики его регулирования. Поведение устройства на данном участке характеризуется его расходно-перепадными характеристиками.

Необходимость экспериментального исследования динамических расходноперепадных характеристик устройств обусловлена трудностями их теоретического анализа в силу нестационарности протекающих процессов [2]. Вследствие этого используют полученные экспериментально статические зависимости, результаты которых не адекватно отображают всегда реальные внутренние запорнопроцессы для

регулирующего элемента устройства и требуют дополнительных уточнений.

Целью данной работы является получение точных количественных и качественных гидродинамических характеристик: Q – расхода через запорно-регулирующий элемент, ΔP – перепада давления до и после дросселирования, ΔT – разности температур до и после дросселирования за цикл срабатывания устройства.

Для обеспечения контроля вышеназванных параметров используется специальный измерительный комплекс (рис.1), включающий в себя:

•Гидродинамический расходомер (ГДР) оригинальной конструкции – измеряет объёмный расход в момент срабатывания (открытия-закрытия) клапана *Q*_{ГУК}.

•Оригинальное устройство слежения и ограничения перемещения запорнорегулирующего элемента клапана с датчиком малых линейных перемещений (ДП2) измерение *x*₃.

•Оснастку исследуемого устройства для измерения температур (термосопротивления) в области до (ДТ1) и после (ДТ2), области дросселирования ($\Delta T_{\Gamma V K}$) с измерителем-регулятором OBEH TPM210 и программным пакетом MasterScada ver.3.4 – для контроля параметров рабочей жидкости.

•Плату ЦАП-АЦП L-CARD E20-10, подключенную к ПК с программным пакетом для обработки данных PowerGraph ver.3.3. •Датчики для контроля избыточного давления: P_y – управления (ДД1), P_H – в на-гнетательной (ДД2) и P_2 –в сливной (ДД3) полостях ГУКа.

Принципиальная схема экспериментального стенда для снятия динамических расходно-перепадных характеристик представлена на рис.1.

Рис. 1. Экспериментальный стенд для снятия динамических расходно-перепадных характеристик: а - принципиальная гидравлическая схема; б - электрическая схема

При исследовании использовались две насосно-энергетические станции. Первая станция обеспечивает циркуляцию потока рабочей жидкости в силовом контуре привода с установившимися параметрами P_{μ} и Q_{μ} в соответствии с методикой эксперимента. Вторая санция осуществляет питание контура гидравлического управления для работы исследуемого устройства - гидроуправляемого клапана (ГУКа) - потоком жидкости с параметрами P_v и Q_v . Объект регулирования - гидромотор (ГМ), в сливной магистрали которого установлен ГУК. Давление управления Р_v замеряется датчиком давления ДД1. Колебания давления на входе в клапан Р₂ и на выходе Р_{сл}, фиксируются датчиками давления ДД2 и ДД3.

Распределитель *P1* позволяет включать и выключать в цепочку привода ГМ, в сливной гидролинии которого установлен ГУК

(спроектирован на основе клапана ПГ54-12). Двухпозиционный распределитель P3 осуществляет перераспределение потока к гидродинамическому расходомеру (ГДР). Давление управления P_y через распределитель P2, при включении YA 3, поступает в поршневую полость инвертора ГУКа, а затем через жёсткую связь воздействует на золотник клапана. Одновременно с этим срабатывает YA4 распределителя P3, тем самым направляя поток жидкости при закрытии золотника клапана в цилиндр ГДР.

В основе работы ГДР лежит принцип измерения объёмного расхода рабочей жидкости в процессе открытия-закрытия управляющего устройства при помощи гидроцилиндра ГЦ и линейного датчика перемещения типа ЛИР-7 (относительная погрешность Δ =2,45 мкм). Цилиндр имеет облегченную конструкцию поршня и штока для уменьшения инерционных сил и пружину сжатия для компенсации сил сухого трения при движении (F_{cmn} = 1,7 H).

Для повышения чувствительности и снижения действия сил реакций опор ГДР устанавливается в вертикальном положении штоком вниз. Ограничение хода при измении регулируется путём установки магнитного датчика положений ДП1 на корпусе гидроцилиндра ГЦ. Возврат в первоначальное положение выполняется в ручном режиме при соединении поршневой полости со сливом.

Рис.2. Диаграммы зависимости температур T₁ и T₂ в области дросселирования ГУКа, полученные в программе MasterScada: a- индикаторная панель; 6 - графическое отображение; в- табличное отображение данных

Мониторинг термодинамических процессов, протекающих в проточной части ГУКа, осуществлялся датчиками температуры: ДТ1 на входе и ДТ2 на выходе из зоны дросселирования. В качестве датчика использовалась термопара, помещённая в тонкостенную (0,5 мм) резьбовую втулку из красной меди 17, внутри заполненную термопроводящей пастой (рис.3). Термопара ДТПL011-0,5 (хромель-копель) с показателем тепловой инерции менее 3 с.

Исследования ГУКа проводились на базе стенда для испытаний позиционного гидропривода, что позволило соблюсти тепловой режим, соответствующий режиму работы в структуре привода. Температура рабочей жидкости (МГЕ-46В) в НЭУ поддерживалась в диапазоне 37±2С° на протяжении серии экспериментов. Контроль осуществлялся термодатчиком ДТС105-50М.В3.250 через терморегулятор ТРМ-202 и интерфейс RS-486, подключенный к ПК с программным пакетом MasterScada v.3.4. Результаты эксперимента визуализировались и вались в виде диаграмм и таблиц значений (рис.2).

В целях уменьшения влияния тепловых процессов расход замерялся при установлении равенства теплового режима в баке насосной установки и перед ГУКом. Компоновка стенда и его элементная база позволяют снимать динамические характеристики целого ряда управляющих устройств с ограничением по рабочему давлению: *P_{нmax}*=7 МПа.

Рис.3. Оснастка ГУКа: 1- золотник; 2 – шайба опорная, 3 – втулка-ограничитель, 4 – шестигранник, 5 – втулка, 6,8 – антифрикционные вкладыши, 8 – подпорная пружина, 10 – поршень, 11, 12 – уплотнения, 13 – регулировочный винт, 14 – корпус клапана, 15 – колпак, 16 - пружина клапана, 17 – втулка термопары

В крышку гидроуправляемого клапана установлено устройство слежения и ограничения перемещения золотника, его конструкция приведена на рис.3. Регулирование хода золотника 1 (0-3,2 мм) осуществляется при помощи поворота шестигранника 4, имеющего связь со втулкой 3, вращающейся с шагом 1 виток/1 мм, которая упирается в опорную шайбу 2. Величина допустимой области открытия-закрытия золотника ГУКа контролируется при помощи датчика перемещения (тип. ВЕ-178 через преобразующий механизм) и передаётся на блок обработки данных (ЦАП-АЦП + ПК).

Для идентификации рабочих процессов использовался метод осциллографирования при помощи специального измерительного комплекса (рис.4). Датчик ЛИР-7 устанавливается в начальное (крайнее) положение для снятия осциллограммы перемещения штока гидроцилиндра. Погрешность измерения расхода жидкости составляет 2,5%. Нестационарный расход жидкости измеряли по скорости движения поршня ГЦ.

Программный пакет PowerGraph 3.3 в режиме реального времени дифференцирует функцию перемещения по времени. Установленный на устройстве магнитный датчик положений позволяет ограничить объём жидкости, поступающей в ГЦ расходомера, формируя управляющий сигнал на переключение распределителя РЗ в позицию *1*. В процессе экспериментальных исследований производилась оценка погрешностей выполненных измерений. Систематические погрешности оценивались на основе анализа точности измерительных приборов и метода измерений [3].

В качестве выходных параметров эксперимента фиксировались:

• Расход через ГУК – $Q_{\Gamma YK}$.

•Давление на входе и выходе ГУКа – *P*₁, *P*₂.

• Давление управления – P_{y} .

• Перемещение золотника – L_3 .

• Температура рабочей жидкости на входе и выходе ГУКа – *T*₁, *T*₂.

Приём входных сигналов от датчиков давления ДД1, ДД2, ДД3 осуществлялся через блок коммутации и плату ЦАП-АЦП. Датчики типа ДТ-150 с погрешностью измерения ±0,8 % предварительно прошли операцию калибровки в программе PowerGraph [5].

Использована следующая методика исследования функционирования ГУКа.

1. Оценка изменения характеристик для открытого положения золотника клапана – моделируется его закрытие. ГУК открыт, давление управления P_y отсутствует, распределитель Р2 находится в первой позиции. Для замера расхода необходимо подать сигнал управления на электромагниты YA3 и YA4 распределителей P2 и P3, соответственно.

2. Оценка изменения характеристик для закрытого положения золотника клапана – моделируется его открытие. ГУК закрыт, давление управления P_y подано в управляющий микродвигатель клапана, распределитель Р2 находится во второй позиции. Для

замера расхода необходимо подать сигнал управления на электромагнит YA3 распределителя P3, соответственно.

Обработка входных сигналов с датчиков перемещения ДП1 и ДП2 в PowerGraph выполнялась в соответствии с алгоритмом блока Functions [5], который представлен в табл.1.

Рис.4 Измерительно-вычислительный комплекс: 1 – блок контроля температуры (ТРМ-202); 2 – блок контроля частоты вращения ГМ (ТХ-01); 3 – плата ЦАП-АЦП (Е20-10); 4 – ПК обрабатывающий центр (программный интерфейс); 5 – блок коммутации сигналов

Таблица 1. Алгоритм математической обработки входных сигналов

N⁰	Канал	Алгоритм расчёта	Наименование	Примечание
Π/Π			операции	
1	Ch5	Level - Const(1)	Уст. уровня	
2	Ch6	Comparison Ch4>Ch5	Сравнение	
3	Ch7	DiffPt(Ch6)	Диффер.	
4	Ch8	Math - ABS(Ch7)	Модуль числа	
5	Ch9	Integral1Pt(Ch8)	Интергриров.	Перемещение, В
6	Ch10	Level - const(1000)	Уст. уровня	Коэф. масштаб.
7	Ch11	Aritfmetics - Ch9/Ch10	Деление	Перемещение, мм
8	Ch12	Differenial -DiffRC(Ch11;1000)	Фильтр ВЧ	Скорость
9	Ch13	Level - Const(1000)	Константа	Коэф. масштаб.
10	Ch14	Aritfmetics - Ch9/Ch13	Деление	Перемещение, 2V

Осциллограмма нестационарного процесса истечения жидкости через золотниковую пару при закрытии гидроуправляемого клапана представлена на рис.5. Результаты отображают гидродинамические характеристики в момент открытия ГУКа при начальных условиях: $P_{\mu}=2,5$ МПа, $P_{y}=4$ МПа, x=3,2мм и представлены без учёта работы гидромотора ГМ.

Рис.5 Осциллограмма нестационарного процесса при закрытии ГУКа, полученная в программе PowerGraph (в масштабе временной оси M2000:1)

На осциллограмме процесса закрытия ГУКа видно запаздывание при измерении динамического расхода, равное 0,2 с. Это объясняется реальной длиной гидролиний связи от ГУКа к ГДР и упругостью их связующих трубопроводов. Компенсировать запаздывание при измерении расхода возможно дополнительной установкой высокоточного реле времени, предварительно рассчитав время запаздывания.

Потери давления ΔP в проточной части ГУКа определялись как разность нестационарных давлений $P_2(t)$ и $P_1(t)$ при соответствующем расходе $Q_{\Gamma \square P}(t)$ и вычислялись после осциллографирования при помощи блока математических функций программы Power-Graph. Для получения расходно-перепадных характеристик типа $\mu = f(t)$, $\xi = f(t)$ и Re = f(t)численные массивы данных из программы PowerGraph в виде таблиц формата Excel импортировались в подсистему Simulink вычислительного пакета MATLAB.

Вывод. Разработанная методика снятия, обработки и визуализации параметров ГУКа:

$$P_2=f(t)$$
 и $P_1=f(t)$, $Q=f(t)$, $\Delta T=f(t)$

позволяет исследовать нестационарные гидродинамические процессы целого ряда золотниковых устройств клапанного типа. Особенностью спроектированного измерительного комплекса является возможность снятия как статических, так и динамических расходно-перепадных характеристик гидравлических устройств.

Полученные расходно-перепадные и регулировочные характеристики гидроуправляемого клапана позволили описать его поведение во всём диапазоне изменения площади проточной части в процессе закрытия-открытия, что в дальнейшем позволит оптимизировать контур гидравлического управления позиционного гидропривода.

Библиографический список

1. Сидоренко, В.С. Структурнопараметрическое управление гидромеханическими позиционерами механизмов машин [Текст] / В.С. Сидоренко, М.С. Полешкин // Гидропневомсистемы мобильных и технологических машин: сб. докл. междунар. науч.- техн. конф.– Минск: БНТУ. 2010.

2. Лещенко, В.А. Гидравлические следящие приводы станков с программным управлением [Текст] / В.А. Лещенко. – М.: Машиностроение, 1975. – 288 с.

3. Сидоренко, В.С. Многофункциональное гидромеханическое устройство позиционирования целевых механизмов станочных систем повышенного быстродействия и точности [Текст] / В.С. Сидоренко, М.С. Полешкин // Вестн. ДГТУ. - 2009. –Т.9.

4. Джонсон, Н. Статистика и планирование эксперимента в технике и науке. Методы

обработки данных [Текст] / Н. Джонсон, Ф. Лион // – М.: Мир, 1980. – 602 с.

5. Измайлов, Д.Ю. «PowerGraph». Справочник по функциям обработки сигналов [Текст] / Д.Ю. Измайлов // ПиКАД. - 2009. - № 1, 2.- С. 36-39.

MEASURING SYSTEM FOR INVESTIGATION FLOW RATE AND FLUID PRESSURE FEATURES OF CONTROL DEVICES FOR THE POSITION HYDRODRIVE

© 2012 M. S. Poleshkin, V. S. Sidorenko

Don State Technical University

This paper presents a measuring system allows us to investigate transient dynamic response control devices. Registration parameters: flow, pressure and spool valve displacement, conducted in real time using the software package PowerGraph and board DAC-ADC mod. E-20-10. The results allow to deduce the laws from the exit flow parameters and refine the mathematical description of the hydraulic control unit.

Hydro-mechanical devices, positioning, nonstationary characteristics, dynamical flowmeter, methodology investigation, performance of the hydraulic units, application PowerGraph, unsteady processes.

Информация об авторах

Полешкин Максим Сергеевич, аспирант, старший преподаватель кафедры «Гидравлика, ГПА и ТП», Донской государственный технический университет. E-mail: <u>Poleshkin.Maks@gmail.com.</u> Область научных интересов: гидромеханические устройства управления позиционным гидроприводом исполнительных механизмов АТО.

Сидоренко Валентин Сергеевич, профессор, доктор технических наук, заведующий кафедрой «Гидравлика, ГПА и ТП», Донской государственный технический университет. E-mail: <u>vsidorenko@dstu.edu.ru</u>. Область научных интересов: оптимальное управление гидрои пневмомеханическими позиционирующими системами технологического оборудования и машин.

Poleshkin Maks Sergeevich, a postgraduate student, Art. Lecturer: «Hydraulics, GPA and TP», Don State Technical University. E-mail: <u>Poleshkin.Maks@gmail.com</u>. Area of research: hydraulic control unit positional hydrodrive actuators automatics technology equipment.

Sidorenko Valentin Sergeevich, Doctor of Technical Sciences, professor of Don State Technical University, Head of Department «Hydraulics, GPA and TP». E-mail: <u>vsidorenko@dstu.edu.ru</u>. Area of research: Optimal control of hydraulic and pneumatic mechanical positioning systems, process equipment and machinery.